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1. Introduction 
The atmosphere is the prevailing compartment for material transfer from land to sea, 

especially for trace elements such as iron to remote ocean surfaces (Jickells et al., 2005). Iron 
plays an important role in biogeochemical cycles (Watson et al., 2000). As it is an essential 
micro-nutrient for marine phytoplankton, iron can be regarded as a limiting factor for primary 
production (Boyd, 2000; Coale et al., 1996). Thus, characterization of iron species is of 
relevance, especially in coastal zones prone to up-welling.  

The fate of atmospheric iron in the environment strongly rests on its solubility in natural 
waters (e.g. cloud droplets, seawater, lakes) and thus on its chemical form (Baker et al., 2006; 
Hoffmann et al., 1996; Hsu et al., 2005). The speciation of Fe-containing aerosols in the 
troposphere governs their solubility and thus the impact of both dissolved and particulate iron 
on phytoplanktonic growth, as well as their ability to serve as cloud condensation nuclei after 
formation of a soluble coating. 

Natural emissions represent the predominant source (from 70 to 80% of atmospheric iron 
(Jickells et al., 2005)). However iron emitted by industrial activities is reported to be more 
soluble in aqueous media (Baker et al., 2006) and is seriously suspected of being a lot more 
bioavailable.  

Our aim was to provide a detailed description of individual particles in order to determine 
the relative proportions of particle types and to distinguish different types of Fe-bearing 
particles so as to give an estimate of how large anthropogenic activities contribute to the total 
particulate iron in atmospheric aerosols in Western Europe. 

 
2. Materials and Methods 
Tropospheric aerosols were weekly sampled during a continuous campaign conducted at 

Cape Gris-Nez (eastern Channel: 50°52’ N; 1°36’ E) from June ’00 to June ’01. Atmospheric 
particulate matter was collected by bulk air filtration onto polycarbonate membranes 
(Nuclepore®, AOX, 0.4 µm, 47 mm) at the top of a 14-m-high mast. The mean filtered 
volume was roughly 200 m3. The in-shore sampling site is located at the top of a 60-m-high 
cliff. Among the 52 samples collected during the one-year campaign, 12 were selected based 
on distinct geographical origins of aerosols determined by air-mass backward trajectories 
ending at 950 hPa. 

Atmospheric particles were individually analyzed with a LEO 438VP scanning electron 
microscope, outfitted with a Gresham energy-dispersive X-ray detector. To obtain statistically 
relevant data, approximately 1000 particles per sample were examined. The net X-ray 
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intensities of 16 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni and Zn) were 
converted into apparent concentrations by applying Castaing’s first approximation for 
quantitative analysis (Laskin and Cowin, 2001) and standardized up to 100%. 

 
3. Results and discussion 
3.1. Marine particles 
Output results of ascending hierarchical analyses performed on SEM-EDX data are 

reported in Figure 1. Clusters partially composed of Na were grouped all together to form one 
large cluster (Figure 1, cluster E). Atmospheric sodium is principally derived from seawater, 
minerals and, in a lesser extent, from anthropogenic activities (Ooki et al., 2002). In our 
experiment, Na was never associated to Si or K, respectively tracer of Na-containing 
terrigenic and anthropogenic aerosols (Ooki et al., 2002) and can thus be regarded as totally 
derived from seawater. Na-containing particles, referred to as marine particles, were the major 
particle type representing on average 70% of particles. The overwhelming abundance of Na-
rich particles is due to meteorological conditions specific to our coastal sampling site. Sea-salt 
particles are emitted prominently by breaking waves. They can be freshly-emitted sea-salt 
particles (arbitrarily designated as such when Na + Cl > 90%) with no or low S content, or 
aged sea-salts (Na + S + Cl or Na + S > 90%), for which the atmospheric lifetime is long 
enough for effective conversion of chlorides into sulphates. The conversion of sea-salt 
particles by exchange of chlorides for sulphates and/or nitrates is documented in details 
elsewhere (Li and Okada, 1999; Roth and Okada, 1998). 

 
3.2. Continental particles 

All particles with no Na were assigned to continental – including both natural and 
anthropogenic – origins. As reported by authors taking an interest in the North Sea (De Bock 
et al., 1994; de Hoog et al., 2005; Injuk et al., 1993; Rojas and Van Grieken, 1992), only a 
small variety of particle types is statistically found whatever the meteorological conditions 
are. Ca-S-rich particles (on average Ca + S = 91%), identified as gypsum, represented on 
average 17% of particles (Figure 1, cluster A). They can be the product of fractional 
crystallization of marine aerosols. They may also result from the reaction of marine CaCO3 
with atmospheric anthropogenic sulphur compounds or with DMSO/DMS (an end-product of 
algal protein material breakdown) (Xhoffer et al., 1991). However, Hoornaert et al. (1996) 
pointed out that these marine sources are only of little importance. They suggested that a large 
fraction of gypsum particles comes from anthropogenic sources, including the reaction 
between land-derived CaCO3 and atmospheric sulphur compounds. Several industrial sources 
(e.g. dust from gypsum quarries, metal plants, combustion processes and desulfurizing 
processes in fossil fuel power plants) may also explain the presence of gypsum particles in the 
low troposphere. Therefore, Ebert et al. (2000) attributed gypsum particles to natural and 
anthropogenic sources in equal proportions. Al-Si-rich particles (on average Al + Si = 70%), 
identified as aluminosilicates, represented roughly 8% of particles (Figure 1, cluster B). They 
comprise a large variety of minerals. Thus, the ratio Al/Si widely varies depending on the 
other minor associated elements (Ca, K, Mg, Na, S and Fe). These particles can be of crustal 
origin (e.g. windblown soil dusts), or of anthropogenic origin (e.g. fly ashes produced by 
burning fossil fuels) (Van Malderen et al., 1992; Xhoffer et al., 1991). These two dictinct 
sources emit particles of similar chemical composition. 

 
3.3. Fe-bearing aerosols 
Fe-rich particles (on average Fe mass concentration = 69%) represented on average 4% of 

particles (Figure 1, cluster D). Fe-rich particles are thought to be more likely of anthropogenic 
origin, even though they could also be of crustal origin (Chester et al., 1996; Moore et al., 
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1984; Prospero et al., 2001). Considering the large extent of industrial activities in northern 
France – located approximately 50 km away from the east of the sampling site – strongly 
influencing the local apportionment of inorganic aerosol pollutants (Véron et al., 1999), Fe-
rich particles are usually attributed to industrial emissions. Regional contamination of air 
masses by industrial aerosols was confidently witnessed by the presence of spherical Fe-rich 
particles similar to those emitted by steel works (Kopcewicz and Kopcewicz, 2001; Xhoffer et 
al., 1991).  
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Figure1: Results of the ascending hierarchical analysis of the atmospheric aerosol samples 
(the geographic classification is named behind the filter number) 

 
To deepen our interpretations, a statistical reanalysis was performed only with Fe-

bearing particles (863 particles with detectable Fe in their spectra), extracted from the whole 
dataset (11 842 particles). Among the nine output clusters (Table 1), only 3 clusters (clusters 
2, 3 and 5) have high Fe contents (Fe > 60%) accounting for 54.9% of Fe-bearing particles. 
These clusters probably gather together iron ((oxy)hydr)oxides. Iron oxides are usually 
interpreted as goethite, hematite or magnetite in atmospheric aerosols (Hoffmann et al., 1996; 
Kopcewicz and Kopcewicz, 2003). They are typically perfect spherules formed during 
industrial high-temperature processes such as those operated in steelworks and coal-fired 
power plants, although anthropogenic irregularly-shaped iron oxide particles can also be 
encountered (Seames, 2003; Zhang et al., 2005). Iron oxides were sometimes enriched in Zn 
(see Table 1, cluster 5) or Cr and Ni (Table 1, cluster 2) as reported in other works (Chen et 
al., 2006; Ledoux et al., 2004). These particles are likely formed during the re-
melting/refining of scrap steel which already contains these metals as alloy components. 
Other clusters comprise mixtures like cluster 1 (probably mixed NaCl and Fe-rich particles) or 
cluster 8 (supposedly gypsum and Fe-rich particles), as well as larger particles of 
aluminosilicates (see Table 1, clusters 6-7) accounting for 34.2% of Fe-bearing particles. The 
aqueous solubility of aluminosilicates is slightly higher than that of iron oxides (Martin, 2005; 
Sofikitis, 2004), although the solubility likelihood depends above all on the natural or 
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anthropogenic origin of particles (Deguillaume et al., 2005; Hoffmann et al., 1996; Hsu et al., 
2005). 1.3 % of Fe-bearing particles were mixed with titanium oxides (Table 1, cluster 9), 
which are often observed in atmospheric aerosols (Chen et al., 2006; Ebert et al., 2000; Murr 
and Bang, 2003). 

 
Previous works (Machemer, 2004; Moreno et al., 2004) demonstrated how large steel 

works emissions impact on the atmospheric abundance of iron oxide particles. The impact at a 
regional scale of the steel metallurgy plant − located approximately 50 km away from the east 
of the sampling site − on the concentration of atmospheric pollutants was also demonstrated 
using lead isotopic tracers (Deboudt et al., 1999; Flament et al., 2002; Véron et al., 1999). It is 
in fact strongly linked to regional meteorological conditions (Ledoux et al., 2004). A regional 
contamination by Fe-rich particles emitted during steel works operations is suggested here. 

 
 

 Relative 
abundance 

(in %) 

Mean of relative elemental concentrations 
for each cluster (in wt.%) 

Mean 
diameter 
(in µm) 

Cluster 1 4.0 Cl(35%) Fe(33%) Na(21%) 0.87 
Cluster 2 8.1 Fe(64%) Cr(19%) Ni(6%) 0.92 
Cluster 3 42.5 Fe(87%) 0.90 
Cluster 4 4.2 Fe(34%) S(25%) Na(23%) P(6%) 0.93 
Cluster 5 4.3 Fe(61%) Zn(33%) 0.90 
Cluster 6 22.6 Si(47%) Al(25%) Fe(11%) 1.62 
Cluster 7 11.6 Si(32%) Fe(22%) Al(13%) Na(10%) Cl(6%) 1.63 
Cluster 8 1.4 Ca(32%) S(32%) Fe(11%) Si(11%) 2.35 
Cluster 9 1.3 Ti(67%) Fe(12%) 1.37 

 
Table 1: Hierarchical clustering analysis of particles containing iron, extracted from all 

analysed samples. Only elements with a relative elemental concentration superior to 5% are 
reported in the table. 

 
 

4. Conclusion 
 
This work was devoted to characterizing Fe-bearing particles in coastal aerosols. Our 

specific in-shore sampling situation induced observing multi-disperse aerosols from distinct 
geographical origins. Single-particle analysis by SEM-EDX is demonstrated here to be 
particularly well-suited to revealing the relative proportions of Fe-bearing particles. A large 
variety of iron species encountered during the one-year campaign is attributed here to the 
mixing of crustal, industrial and marine-originating aerosols. ((Oxy)hydr)oxides and 
aluminosilicates are the main Fe-containing chemical forms, accounting respectively for 55% 
and 34% of particles. 
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