

Effect of ocean acidification on shellfish early life stages

Frédéric Gazeau

Anne Elisabeth Pronker, Frank Peene, Jan Peene, Jean-Pierre Gattuso, Jack J. Middelburg, Carlo H. Heip

Larval stage: more fragile?

- Numerous studies show a negative effect of ocean acidification on marine organisms (coccolithophorids, corals, forams, pteropods, echinoderms, molluscs etc..)
- Many reports consider that the larval stage of calcifiers is the most fragile period
- Critical stage for the survival of the populations (1-2 % success in situ)
- Evidence that pH control recruitment (i.e. Green et al. 2009)
- Few studies so far

Fig. 4. Crassostrea gigas. Shell mineralization in embryos incubated for 24 or 48 h in control or CO_2 groups, determined by polarized light microscopy (mean \pm SD; n = 5). Significant difference between control and CO_2 groups by paired t-test: $^*p < 0.05$. $^{**}p < 0.005$

- Kurihara et al. (2007)
- Crassostrea gigas
- Control: $pCO_2 = 348 \text{ ppm}$, pH = 8.1, $\Omega_{arag} = 3$
- CO_2 : $pCO_2 = 2268$, pH = 7.4, $\Omega_{arag} = 0.68$
- Large effects on success rates (60 to 25%)
- Significant effects on growth rates
- $\Omega = [CO_3^{2-}] [Ca^{2+}] / K_s$

- Kurihara et al. (2007)
- Crassostrea gigas
- Control: $pCO_2 = 348 \text{ ppm}$, pH = 8.1, $\Omega_{arag} = 3$
- CO_2 : $pCO_2 = 2268$, pH = 7.4, $\Omega_{arag} = 0.68$
- Large effects on success rates (60 to 25%)
- Significant effects on growth rates
- $\Omega = [CO_3^{2-}] [Ca^{2+}] / K_s$

- Kurihara et al. (2008)
- Mytilus galloprovencialis
- Control: pH = 8.2, Ω_{arag} = 2.2
- CO_2 : pH = 7.4, Ω_{arag} = 0.5
- Large effects on success rates (>90 to ≈0%)
- Significant effects on growth rates

- Kurihara et al. (2008)
- Mytilus galloprovencialis
- Control: pH = 8.2, Ω_{arag} = 2.2
- CO_2 : pH = 7.4, Ω_{arag} = 0.5
- Large effects on success rates (>90 to ≈0%)
- Significant effects on growth rates

- Miller et al. (2009)
- Crassostrea virginica
- Crassostrea ariakensis
- pH from 8.2 to 7.8 (NBS)
- Ω_{arag} from 1.2 to 0.6
- From day 2 to 32
- Significant effects on growth rates for 1 species and effects on shell carbonate content

Effects on Mytilus edulis

- Experiment carried out on the first 2 days of development (egg to Dlarvae)
- pH (NBS) of 8.1, 7.8 and pH of 8.1 and 7.6
- At 7.8, no effect on hatching rates, significant effect on growth rate (-15%)
- At pH 7.6 (Ω_{arag} <1), decreases of both hatching (-25%) and growth rates (-40%)

Submitted to Aquatic biology

Day 2 to day 15

No effect on mortality

Decrease of growth by 10%

Submitted to Aquatic biology

Resume

- Growth decrease (10-15%) of mussel larvae for a decrease of 0.3 pH unit. This pH decrease is expected for the end of the century. Effect which IS NOT stronger than for adults
- At pH 7.8, water is oversaturated with respect to aragonite.
- Decreasing pH so that water is undersaturated with respect to aragonite leads to a strong decrease of hatching and growth rates, but they still produce a shell (show that they control their calcification rates)
- Are we sure that this strong effect is "only" due to the aragonite undersaturation?
- Can be solely due to the pH decrease that disrupt the intra-membrane fluxes

New experiment (May/June 2009)

- Studying larval development from egg to Dshape larvae (2-3 days), under contrasting conditions of pH and of the carbonate system
- High pH/low pH, high TA/low TA
- Ω also controlled in 1 treatment by increasing calcium concentration
- 5 different treatments, triplicate incubations
- pH monitored continuously, TA measured before and after incubation.

New experiment

- pH successfully controlled via CO₂ bubbling (390, 1000, 2000 and 4000 ppm)
- TA controlled by adding HCl or NaHCO₃
- Calcium increased by CaCl₂ addition (6x ambient Ca)

Results

- Preliminary Success rate results suggest significant effects only at high CO_2 ($\Omega_{aragonite} < 1$) and low TA/high Ca conditions
- Growth rates (length and shell area) also decrease at 2000 ppm ($\Omega_{aragonite}$ < 1) and at low TA/high Ca (although $\Omega_{aragonite}$ > 1)
- No effects at 1000 ppm and at high TA/low pH ($\Omega_{\rm aragonite} > 1$)
- Hatching and growth are still occurring even if $\Omega_{\text{aragonite}} < 1$

What is the controlling parameter?

 No effects on hatching and growth at 4000 ppm (pH_T = 7.5) but with high TA suggest that pH is not critical in that range

 TA per se is not the controlling parameter since a broad range of growth rates were measured for the same TA level

What is the controlling parameter?

• $\Omega_{aragonite}$ is also not the critical parameter since addition of calcium does not favor hatching and/or growth

 Clear relationship between growth and CO₃²⁻ concentration, hatching and growth are limited via a limitation of calcification

- Growth no favored by Ca addition above ambient levels
- Calculation of $\Omega_{\text{arag}}^{\prime}$ considering no change of Ca
- Larvae still able to develop under $\Omega_{arag}' = 1$
- However, below 1, both hatching and growth significantly decrease, leads to population collapse?

Conclusion

- Different studies show that shellfish larvae are negatively affected by ocean acidification
- Growth decrease above aragonite saturation is relatively low and not always found
- Below saturation, both development success and growth rates are altered, potentially leading to population collapse
- CO₂ dissolves much better in cold waters. They will experience aragonite undersaturation first, we need to focus on these high latitude populations!