SOLAS 2015

CNRM-GAME

Ongoing Developments in the model Méso-NH for emission of primary sea salt aerosols

Marine Claeys CNRM-GAME, Toulouse

Marc Mallet (La, Toulouse) Greg Roberts (CNRM, Toulouse) Pierre Tulet (LACy, St-Denis, La Réunion)

29 juin 2015

Motivation

Objectives :

Caracterise the physico-chemical (concentration, size distribution, chemical composition, vieillessement, hygroscopicity) et optical properties of marine aerosols and their Direct Radiative Effect (DRE) (visible et close IR) in the Mediterranean bassin

Tools :

Experimental data from field campaigns ChArMEx (ADRIMED & SAFMED+) Lagrangian transport and dispersion model Flexpart (Stohl et al., 1998) Meteo data, AERONET/PHOTONS, satellite data (MODIS, Seviri) Méso-NH model

Implementation of a new emission scheme of primary marine aerosols (Ovadnevaite et al., 2014) in the Méso-NH model

Step 1 : Study of the experimental data

Step 2 : Méso-NH Modelling

Estimate the ability of the model Méso-NH to reproduce the concentration and optical properties of marine aerosols and their effect on solar radiation → Case study

Case study 1 **ADRIMED 22-26 June 2013**

Choice of a simulation period

Ratio [SSA] (PILS) / [PM10 mass] (TEOM)

Sea salt concentration higher with **local westerly** wind

22-26 June

In situ measurements:

- → SSA concentration reaches 6 µg/m³
- → SSA concentration > 40 % mass (PM10)

Period caracterised by significant concentrations of sea salt aerosols and adapted to the objectives of this study

Case study 1 Air masses origins

Flexpart maps

-> **P**ossible contribution of fresh sea salt (Gulf of Lion) and aged sea salt (Gulf of Gascogne and Atlantic Ocean)

Case study 1 Size distribution

Concentration depending on aerosol sizes

SMPS size distribution \rightarrow High contribution of fine and accumulation modes from the 22nd to the 26th of June

OPS & APS \rightarrow Coarse mode from the 22nd to the 26th of June \rightarrow Probably SSA and/or Dust

AERONET

06-08

06-12

06-16

06-20

06-24

Date

06-28

07-02

07-06

07-10

07-14

12/07 14/07

AOT 380

AOT 340

Case study 1 Ageing of salt

ATOFMS data, Jovanna Arndt., univ of Cork

Case study 1 Relation size/ageing of sea salt

Fitting method : -Mean of size distribution for each period -Sum of 3 to 5 lognormal modes

 \rightarrow **N**o distinction of caracteristic modes for fresh sea salt and aged sea salt among the size distribution of all the particules

 $\rightarrow But$ differences of size distribution between air masses containing fresh and aged sea salt and those nopt containing sea salt :

A mode appears around 1 μ m except for one case (27/06 aged salt, corresponding to the end of the salt episode). The number of particles in this mode is lower for aged salts than fresh salts.

 \rightarrow Deposition during transport

Conclusion In situ results

Period 22 – 26 June : NaCl > 40 % PM10 mass

Air masses from the West (Lion Gulf, Atlantic Ocean)

Coarse Mode : Instrumental (APS – OPS) AERONET (scattering particles, low AOD)

→ Significative mass concentration of Sea salt aerosol particles

Ageing :

Sea salt aerosols rather aged Good agreement between PILS and ATOFMS

Size distribution :

Specific mode for sea salt aerosols

Production of marine aerosols

Particules > 10 μ m Wind > 8-10 ms⁻¹

Couverture moutonneuse (Whitecap)

f. **J**et drops

 $R > 1 \mu m$

Lewis and Schwartz, 2004

Emission of marine aerosols depends mainly on wind speed. But also on SST, salinity and sea state

d. **F**ilm drops

R < 1 µm

Méso-NH : Schéma de génération de sels marins primaire (NaCl)

- Previous schemes :
 - Schulz et al., 2004
 - Vignati et al., 2001

Disadvantages :

- Only take into account wind speed
 - → Effects of SST and sea state neglected
- Size spectrum does not take into account smallest particles
- New scheme :
 - Ovadnevaite et al., 2014

F (Wind speed) 3 aerosol modes

Ovadnevaite et al., 2014

 \rightarrow Modes determined from filed measurements (in situ & North Atlantic cruises)

→ **D**ependence to Re_{Hw} different for each mode

$$Re_{Hw}=u_{*}H_{s}/v_{w}$$

H_s : Significative height of wind waves (**ECMWF**) v_w : Viscosity of sea water (F(SST))

Why this parametrization ?

Possible inclusion of sea state
Size Spectrum more complete (submicron and supermicron)

 \rightarrow Direct and indirect radiative effect •Anticipation for future high resolution coupled models

Emission flux in fonction of marine aerosols sizes

Méso-NH simulations ADRIMED

$\mathbf{1}^{\mathrm{st}}$ simulation

- 12 to 27 June period
 - Salt Episod from 22 to 26 June
 - Dust Episode from 16 to 20 June
- 64 vertical levels
 - 30 levels below 1000 m
 - 1st level at 10m
- 3 nested domains

Meteorological forcings :

- ECMWFanalyzes every 6h
- Horizontal resolution: 0,125°

Schemes DUST et SALT (Tulet et al., 2005) activated

1 moment : Variation of the concentration only (Standard deviation & median radius fixed)

Developments ongoing

- Inclusion of significant height of wind waves by Méso-NH
- Hygrosocopic growth of marine aerosols for radiative properties (DRE)
 - Gerber, 1984

At RH=80 % Growth factor ~ 2

Surface (RH=80 %) = 4 x Surface (r_{dry})

→ Impact Optical properties

- Simulation ADRIMED :
 - Simulation with marine aerosols emission in the whole domain
 VS Simulation with emission in the mediterranean basin only
 - → Respective contribution of Atlantic Ocean and Mediterranean sea on sea salt concentration measured in Ersa
 - Inclusion of the organic fraction of marine aerosols
 - → Parameterization ?
 - → Hygroscopic growth of aerosols (↓ hygrosocopic abilities of sea salt when organic fraction ↑)
 - \rightarrow Optical properties and indirect radiative effect
- Second case study : SAFMED+ measurement campaign
 - Atmospheric dynamic ≠
 - Moderate wind and long distance transport (ADRIMED)
 - Strong Mistral (SAFMED+)

Questions ?

Cas d'étude SAFMED+ Juillet 2014

Vols instrumentés ATR 42 : 10/07/2014

Cas d'étude très différent: Cas typique de Mistral fort sur le bassin Méditerranéen

Complémentaire du cas ADRIMED -> Vent modéré et transport longue distance

Plan de vol Cas de vent fort (v \uparrow 90km/h) Mesures de la distribution de taille des aérosols et de leur composition chimique

Vitesse du vent

Données du LAMP

→ Possibilité de suivre la trajectoire avion avec Méso-NH