

Impact of Saharan dust deposition on dissolved-colloidal-particulate nutrient distribution in seawater

Matthieu Bressac^{1,2}, Cécile Guieu², Justine Louis², Maria-Luiza Pedrotti²

¹ ACRI-ST, Sophia Antipolis, France, ² Laboratoire d'Océanographie de Villefranche/Mer, CNRS-INSU-UPMC, UMR 7093, Observatoire Océanologique, Villefranche-sur-Mer, France

Objectives

- Quantify dissolution and adsorption processes in **abiotic condition** with settling of particles representative of dynamic in natural system
 - Dissolution kinetics How size speciation of nutrients is affected by the Sinking lithogenic particles?
- Particle desorption **DOM/ligands control** Dissolved Particulate nutrients nutrients Particle adsorption **Aggregation - POM**

- Methods
- 300 L of seawater collected and filtered (0.2 μm) at 3 periods: **bloom – post-bloom – winter mixing FEBRUARY** MAY **OCTOBER**
- Seeding: wet deposition (10 g.m⁻²) of processed Saharan dust (Guieu et al. 2010)
- Sampling and handling under ultra-clean conditions
- Discrete measurements at 3 depths (0.1 0.3 0.6 m)

• Seasonal variation: net effect of atmospheric deposition dependent of **seawater characteristics**?

Dissolved organic matter (DOM)

= positive feedback between dust

and ocean biogeochemistry?

 $PSD = 0.7 - 250 \,\mu m$ (Coulter Counter + LISST-100) P - Fe : analysis after filtration at 0.2 and 0.015 μm $a_{\rm CDOM} - {\rm TEP} - ({\rm DOC})$

Contrasted initial DOM conditions

	MAY	OCTOBER	FEBRUARY
TEP [μmol/L]	27.1	16.3	2.7
a _{CDOM} (300) [m⁻¹]	0.403	0.357	0.312
dFe [nM]	3.7	3.7	3.9
DIP [nM]	3.5	6	9

TEP and *a_{CDOM}* values reveal different initial quantities and qualities of DOM: May > October > February

What is the role of the DOM in the dissolution of atmospheric Fe and P after a Saharan dust event? (colloids – aggregation process?)

Seasonal Variability of atmospheric Fe and P Dissolution: RESULTS

Seasonal variation of DOM \rightarrow Variation in the dissolution of Fe and P ("easily" dissolvable Fe and P fraction) - after one week: same situation Evidence of aggregation \rightarrow in May and October, number of collisions with colloids (DOM) was higher leading to significantly lower net dissolution Very fast kinetic processes \rightarrow few hours (6 – 12 h) after seeding, the decrease of [dFe] and [DIP] corresponds to scavenging (no biological uptake) (Wagener et al. 2010)

Saharan dust event when high in situ DOM \rightarrow lower supply of new dissolved nutrients to the system

Conclusions and Perspectives

Consideration of short time scale very important for experimental evidence of dissolved-particulate exchanges

Atmospheric nutrients inputs must be considered along with the settling of the atmospheric particles

Ust deposition events may have different responses as a function of seawater characteristics

Colloidal pumping plays a crucial role in the fate of atmospheric new nutrients

 Depending on *in situ* conditions (DOM), submicron lithogenic particles could have a "cleaning effect" for atmospheric nutrients

Y Toward a better consideration of the dynamic and characterization of the colloidal pool (TEP – Size speciation of nutrients)

References cited

Guieu C, Dulac F, Desboeufs K, Wagener T, Pulido-Villena E, Grisoni JM, Louis F, Ridame C, Blain S, Brunet C, Bon Nguyen E, Tran S, Labiadh M, Dominici JM (2010) Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs. Biogeosciences 7:2765-2784

Wagener T, Guieu C, Leblond N (2010) Effects of dust deposition on iron cycles in the surface Mediterranean Sea: results from a mesocosm seeding experiment. Biogeosciences 7:2799-2830