anrt®

association nationale 1ant |

R + - Laboratared Ocnogrpte
{ & deVilfranch

')
=]

Impact of Saharan dust deposition on dissolved-colloidal-particulate
nutrient distribution in seawater
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Objectives

e Quantify dissolution and adsorption processes in abiotic condition with
settling of particles representative of dynamic in natural system
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Methods

e 300 L of seawater collected and filtered (0.2 um) at 3
periods: bloom — post-bloom — winter mixing
MAY OCTOBER FEBRUARY

e Seeding: wet deposition (10 g.m?) of processed Saharan
dust (Guieu et al. 2010)

e Sampling and handling under ultra-clean conditions

Discrete measurements at 3 depths (0.1 - 0.3 - 0.6 m)
PSD =0.7 — 250 um (Coulter Counter + LISST-100)
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of seawater characteristics? Ocpom— TEP —(DOC)
Contrasted initial DOM conditions
MAY | OCTOBER | FEBRUARY
TEP [umol/L] 27 1 16.3 2.7 TEP and a5\ Values reveal different initial quantities and qualities of DOM: May > October > February
dcpom(300) [m™] | 0.403 | 0.357 0.312 What is the role of the DOM in the dissolution of atmospheric Fe and P after a Saharan dust event?
dFe [nM] 3.7 3.7 3.9 (colloids — aggregation process?)
DIP [nM] 3.5 6 9
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Seasonal variation of DOM — Variation in the dissolution of Fe and P (“easily” dissolvable Fe and P fraction) - after one week: same situation
Evidence of aggregation = in May and October, number of collisions with colloids (DOM) was higher leading to significantly lower net dissolution
Very fast kinetic processes = few hours (6 — 12 h) after seeding, the decrease of [dFe] and [DIP] corresponds to scavenging (no biological uptake) (wagener et al. 2010)

Saharan dust event when high in situ DOM — lower supply of new dissolved nutrients to the system

What control the fate of atmospheric Fe and P?

February: Submicron particles active in Fe and P

itu 0 05 1 6 12 24 48 72 9 144 May and October: Abiotic formation of colloids ,
* 0.55 : adsorption
May _ and aggregates after seeding
a i Q . ofe . . .
CDOM 0.50 : TEP formed from filtered precursors (< 0.2 um) C;nce e(.quﬂllobrl.um of the.dllssolutlon procesfs reached
S ctober oas = (data not available in May after seeding) Hyp: submicron particles .represent an important
S . substrate for adsorption as they settle
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Conclusions and Perspectives

v’ Consideration of short time scale very important for experimental
evidence of dissolved-particulate exchanges

v' Atmospheric nutrients inputs must be considered along with the settling
of the atmospheric particles

v’ Dust deposition events may have different responses as a function of
seawater characteristics
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v’ Colloidal pumping plays a crucial role in the fate of atmospheric new nutrients

v Depending on in situ conditions (DOM), submicron lithogenic particles could
have a “cleaning effect” for atmospheric nutrients

v’ Toward a better consideration of the dynamic and characterization of the
colloidal pool (TEP — Size speciation of nutrients)

Guieu C, Dulac F, Desboeufs K, Wagener T, Pulido-Villena E, Grisoni JM, Louis F, Ridame C, Blain S, Brunet C, Bon Nguyen E, Tran S, Labiadh M, Dominici JM (2010) Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs.

Biogeosciences 7:2765-2784

Wagener T, Guieu C, Leblond N (2010) Effects of dust deposition on iron cycles in the surface Mediterranean Sea: results from a mesocosm seeding experiment. Biogeosciences 7:2799-2830



